LeetCode 334. 递增的三元子序列

1. 题目

给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列。

数学表达式如下:

如果存在这样的 i, j, k, 且满足 0 ≤ i < j < k ≤ n-1,
使得 arr[i] < arr[j] < arr[k] ,返回 true ; 否则返回 false 。
说明: 要求算法的时间复杂度为 O(n),空间复杂度为 O(1) 。

示例 1:

输入: [1,2,3,4,5]
输出: true
示例 2:

输入: [5,4,3,2,1]
输出: false

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/increasing-triplet-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2. 解题

  • left 记录最小值,right 记录次小值
  • 更新 left ,right,如果 num 大于 right,则找到
class Solution {
public:
    bool increasingTriplet(vector<int>& nums) {
        int left = INT_MAX;
        int right = INT_MAX;        
        for (int i = 0; i < nums.size();++i) 
        {
            if (nums[i] <= left)
                left = nums[i];
            else if (nums[i] <= right) 
                right = nums[i];
            else
                return true;
        }     
        return false;
    }
};
  • 正向扫描获取到当前位置最小值下标 dpmin
  • 反向扫描获取当前位置到最后的最大值下标 dpmax
  • 遍历数组, d p m i n [ i ] < i < d p m a x [ i ] dpmin[i] < i < dpmax[i] dpmin[i]<i<dpmax[i], 则满足
class Solution {
public:
    bool increasingTriplet(vector<int>& nums) {
        if(nums.size() < 3)
        	return false;
        int dpmin[nums.size()], dpmax[nums.size()], temp;
        temp = INT_MAX;
        for(int i = 0; i < nums.size(); ++i)
        	if(nums[i] <= temp)
        	{
        		dpmin[i] = i;
        		temp = nums[i];
        	}
        	else
        		dpmin[i] = dpmin[i-1];
    	temp = INT_MIN;
        for(int i = nums.size()-1; i >= 0; --i)
        	if(nums[i] >= temp)
        	{
        		dpmax[i] = i;
        		temp = nums[i];
        	}
        	else
        		dpmax[i] = dpmax[i+1];
        for(int i = 0; i < nums.size(); ++i)
        	if(i > dpmin[i] && i < dpmax[i])
        		return true;
    	return false;
    }
};

在这里插入图片描述

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页