《统计学习方法》学习笔记目录

已标记关键词 清除标记
相关推荐
目录 前言 符号表 第1章 统计学习方法概论 1.1 统计学习 1.2 监督学习 1.2.1 基本概念 1.2.2 问题的形式化 1.3 统计学习三要素 1.3.1 模型 1.3.2 策略 1.3.3 算法 1.4 模型评估与模型选择 1.4.1 训练误差与测试误差 1.4.2 过拟合与模型选择 1.5 正则化与交叉验证 1.5.1 正则化 1.5.2 交叉验证 1.6 泛化能力 1.6.1 泛化误差 1.6.2 泛化误差上界 1.7 生成模型与判别模型 1.8 分类问题 1.9 标注问题 1.10 回归问题 本章概要 继续阅读 习题 参考文献 第2章 感知机 2.1 感知机模型 2.2 感知机学习策略 2.2.1 数据集的线性可分性 2.2.2 感知机学习策略 2.3 感知机学习算法 2.3.1 感知机学习算法的原始形式 2.3.2 算法的收敛性 2.3.3 感知机学习算法的对偶形式 本章概要 继续阅读 习题 参考文献 第3章 k 近邻法 3.1 k 近邻算法 3.2 k 近邻模型 3.2.1 模型 3.2.2 距离度量 3.2.3 k 值的选择 3.2.4 分类决策规则 3.3 k 近邻法的实现: kd 树 3.3.1 构造kd 树 3.3.2 搜索kd 树 本章概要 继续阅读 习题 参考文献 第4章 朴素贝叶斯法 4.1 朴素贝叶斯法的学习与分类 4.1.1 基本方法 4.1.2 后验概率最大化的含义 4.2 朴素贝叶斯法的参数估计 4.2.1 极大似然估计 4.2.2 学习与分类算法 4.2.3 贝叶斯估计 本章概要 继续阅读 习题 参考文献 第5章 决策树 5.1 决策树模型与学习 5.1.1 决策树模型 5.1.2 决策树与 if-then 规则 5.1.3 决策树与条件概率分布 5.1.4 决策树学习 5.2 特征选择 5.2.1 特征选择问题 5.2.2 信息增益 5.2.3 信息增益比 5.3 决策树的生成 5.3.1 ID3算法 5.3.2 C4.5的生成算法 5.4 决策树的剪枝 5.5 CART算法 5.5.1 CART生成 5.5.2 CART剪枝 本章概要 继续阅读 习题 参考文献 第6章 逻辑斯谛回归与最大熵模型 6.1 逻辑斯谛回归模型 6.1.1 逻辑斯谛分布 6.1.2 二项逻辑斯谛回归模型 6.1.3 模型参数估计 6.1.4 多项逻辑斯谛回归 6.2 最大熵模型 6.2.1 最大熵原理 6.2.2 最大熵模型的定义 6.2.3 最大熵模型的学习 6.2.4 极大似然估计 6.3 模型学习的最优化算法 6.3.1 改进的迭代尺度法 6.3.2 拟牛顿法 本章概要 继续阅读 习题 参考文献 第7章 支持向量机 7.1 线性可分支持向量机与硬间隔最大化 7.1.1 线性可分支持向量机 7.1.2 函数间隔和几何间隔 7.1.3 间隔最大化 7.1.4 学习的对偶算法 7.2 线性支持向量机与软间隔最大化 7.2.1 线性支持向量机 7.2.2 学习的对偶算法 7.2.3 支持向量 7.2.4 合页损失函数 7.3 非线性支持向量机与核函数 7.3.1 核技巧 7.3.2 正定核 7.3.3 常用核函数 7.3.4 非线性支持向量分类机 7.4 序列最小最优化算法 7.4.1 两个变量二次规划的求解方法 7.4.2 变量的选择方法 7.4.3 SMO算法 本章概要 继续阅读 习题 参考文献 第8章 提升方法 8.1 提升方法AdaBoost算法 8.1.1 提升方法的基本思路 8.1.2 AdaBoost算法 8.1.3 AdaBoost的例子 8.2 AdaBoost 算法的训练误差分析 8.3 AdaBoost 算法的解释 8.3.1 前向分步算法 8.3.2 前向分步算法与AdaBoost 8.4 提升树 8.4.1 提升树模型 8.4.2 提升树算法 8.4.3 梯度提升 本章概要 继续阅读 习题 参考文献 第9章 EM算法及其推广 9.1 EM算法的引入 9.1.1 EM算法 9.1.2 EM 算法的导出 9.1.3 EM 算法在非监督学习中的应用 9.2 EM 算法的收敛性 9.3 EM 算法在高斯混合模型学习中的应用 9.3.1 高斯混合模型 9.3.2 高斯混合模型参数估计的 EM算法 9.4 EM算法的推广 9.4.1 F函数的极大-极大算法 9.4.2 GEM算法 本章概要 继续阅读 习题 参考文献 第10章 隐马尔可夫模型 10.1 隐马尔可夫模型的基本概念 10.1.1 隐马尔可夫模型的定义 10.1.2 观测序列的生成过程 10.1.3 隐马尔可夫模型的 3 个基本问题 10.2 概率计算算法 10.2.1 直接计算法 10.2.2 前向算法 10.2.3 后向算法 10.2.4 一些概率与期望值的计算 10.3 学习算法 10.3.1 监督学习方法 10.3.2 Baum-Welch算法 10.3.3 Baum-Welch 模型参数估计公式 10.4 预测算法 10.4.1 近似算法 10.4.2 维特比算法 本章概要 继续阅读 习题 参考文献 第11章 条件随机场 11.1 概率无向图模型 11.1.1 模型定义 11.1.2 概率无向图模型的因子分解 11.2 条件随机场的定义与形式 11.2.1 条件随机场的定义 11.2.2 条件随机场的参数化形式 11.2.3 条件随机场的简化形式 11.2.4 条件随机场的矩阵形式 11.3 条件随机场的概率计算问题 11.3.1 前向-后向算法 11.3.2 概率计算 11.3.3 期望值的计算 11.4 条件随机场的学习算法 11.4.1 改进的迭代尺度法 11.4.2 拟牛顿法 11.5 条件随机场的预测算法 本章概要 继续阅读 习题 参考文献 第12章 统计学习方法总结 附录 A 梯度下降法 附录 B 牛顿法和拟牛顿法 附录 C 拉格朗日对偶性 索引
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页