此篇为 李航老师著的《统计学习方法》的学习笔记汇总,准备学习并敲一敲代码,还请大家不吝赐教!updated on 2020.4.26 一些相关的实践:请查阅机器学习 1. 统计学习及监督学习概论 2. 感知机(Perceptron) 3. K 近邻法(K-Nearest Neighbor, K-NN) 4. 朴素贝叶斯法(Naive Bayes,NB) 5. 决策树(Decision Tree,DT) 6. 逻辑斯谛回归模型( Logistic Regression,LR)& 最大熵模型(Max Entropy,ME) 7. 支持向量机(Support Vector Machines,SVM) 8. 提升方法(Boosting) 9. EM(期望极大化)算法及其推广 10. 隐马尔科夫模型(Hidden Markov Model,HMM) 11. 条件随机场(Conditional Random Field,CRF) 12. 监督学习方法总结 13. 无监督学习概论 14. 聚类方法(Clustering) 15. 奇异值分解(Singular Value Decomposition,SVD) 16. 主成分分析(Principal Component Analysis,PCA) 17. 潜在语义分析(Latent Semantic Analysis,LSA) 18. 概率潜在语义分析(Probabilistic Latent Semantic Analysis,PLSA) 19. 马尔可夫链蒙特卡罗法(Markov Chain Monte Carlo,MCMC) 20. 潜在狄利克雷分配(Latent Dirichlet Allocation,LDA) 21. PageRank 算法 22. 无监督学习方法总结