剑指Offer - 面试题47. 礼物的最大价值(动态规划)

1. 题目

在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?

示例 1:
输入: 
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
输出: 12
解释: 路径 13521 可以拿到最多价值的礼物
 
提示:
0 < grid.length <= 200
0 < grid[0].length <= 200

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/li-wu-de-zui-da-jie-zhi-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2. 解题

简单DP题目:参考博文内的例子

  • 第一行,第一列,没有选择,只能是一条路走过来
  • 其余地方,均可从上面和左边过来,取最大的
  • d p [ i ] [ j ] = g r i d [ i ] [ j ] + m a x ( d p [ i ] [ j − 1 ] , d p [ i − 1 ] [ j ] ) dp[i][j] = grid[i][j] + max(dp[i][j-1], dp[i-1][j]) dp[i][j]=grid[i][j]+max(dp[i][j1],dp[i1][j])
class Solution {
public:
    int maxValue(vector<vector<int>>& grid) {
    	if(grid.empty() || grid[0].empty())
    		return 0;
    	int m = grid.size(), n = grid[0].size(), i, j;
    	vector<vector<int>> dp(m, vector<int>(n,0));
    	dp[0][0] = grid[0][0];
    	for(j = 1; j < n; j++)
    		dp[0][j] = dp[0][j-1] + grid[0][j];
    	for(i = 1; i < m; ++i)
    		dp[i][0] = dp[i-1][0] + grid[i][0];
    	for(i = 1; i < m; ++i)
    		for(j = 1; j < n; j++)
    			dp[i][j] = grid[i][j] + max(dp[i][j-1], dp[i-1][j]);
		return dp[m-1][n-1];
    }
};

在这里插入图片描述

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页