LeetCode 1755. 最接近目标值的子序列和(状态枚举 + 双指针)

文章目录

1. 题目

给你一个整数数组 nums 和一个目标值 goal 。

你需要从 nums 中选出一个子序列,使子序列元素总和最接近 goal 。
也就是说,如果子序列元素和为 sum ,你需要 最小化绝对差 abs(sum - goal)

返回 abs(sum - goal) 可能的 最小值

注意,数组的子序列是通过移除原始数组中的某些元素(可能全部或无)而形成的数组。

示例 1:
输入:nums = [5,-7,3,5], goal = 6
输出:0
解释:选择整个数组作为选出的子序列,元素和为 6 。
子序列和与目标值相等,所以绝对差为 0 。

示例 2:
输入:nums = [7,-9,15,-2], goal = -5
输出:1
解释:选出子序列 [7,-9,-2] ,元素和为 -4 。
绝对差为 abs(-4 - (-5)) = abs(1) = 1 ,是可能的最小值。

示例 3:
输入:nums = [1,2,3], goal = -7
输出:7
 
提示:
1 <= nums.length <= 40
-10^7 <= nums[i] <= 10^7
-10^9 <= goal <= 10^9

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/closest-subsequence-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2. 解题

  • 直接枚举,时间复杂度 2 40 ≈ 1 0 12 2^{40} \approx 10^{12} 2401012,肯定超时
  • 分治枚举,取出一半来枚举 2 20 ≈ 1 0 6 2^{20} \approx 10^6 220106,然后对两半边的状态排序,双指针求解
class Solution {
public:
    int minAbsDifference(vector<int>& nums, int goal) {
        int n = nums.size();
        vector<int> arr1, arr2;
        getsum(nums, 0, n/2, arr1);
        getsum(nums, n/2, n, arr2);
        int i = 0, j = arr2.size()-1, n1 = arr1.size();
        int diff = INT_MAX, sum;
        while(i < n1 && j >= 0)
        {
            sum = arr1[i] + arr2[j];
            diff = min(diff, abs(sum-goal));
            if(sum > goal)
                j--;
            else if(sum < goal)
                i++;
            else
                break;
        }
        return diff;
    }
    void getsum(vector<int>& nums, int l, int r, vector<int>& arr)
    {
        int n = r-l;
        arr.resize(1<<n);
        for(int i = 0; i < (1<<n); i++)
        {
            for(int j = 0; j < n; j++)
            {
                if(i & (1 << j))
                    continue;// i 状态 包含 j 数字
                arr[i+(1<<j)] = arr[i] + nums[l+j];
            }
        }
        sort(arr.begin(), arr.end());
    }
};

1180 ms 29.2 MB C++


我的CSDN博客地址 https://michael.blog.csdn.net/

长按或扫码关注我的公众号(Michael阿明),一起加油、一起学习进步!
Michael阿明

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页