LeetCode 1808. 好因子的最大数目(整数拆分,乘积最大)

文章目录

1. 题目

给你一个正整数 primeFactors 。你需要构造一个正整数 n ,它满足以下条件:

  • n 质因数(质因数需要考虑重复的情况)的数目 不超过 primeFactors 个。
  • n 好因子数目 最大化
    如果 n 的一个因子可以被 n 的每一个质因数整除,我们称这个因子是 好因子 。
    比方说,如果 n = 12 ,那么它的质因数为 [2,2,3] ,那么 6 和 12 是好因子,但 3 和 4 不是。

请你返回 n 的好因子的数目。
由于答案可能会很大,请返回答案对 10^9 + 7 取余 的结果。

请注意,一个质数的定义是大于 1 ,且不能被分解为两个小于该数的自然数相乘。一个数 n 的质因子是将 n 分解为若干个质因子,且它们的乘积为 n 。

示例 1:
输入:primeFactors = 5
输出:6
解释:200 是一个可行的 n 。
它有 5 个质因子:[2,2,2,5,5] ,且有 6 个好因子:[10,20,40,50,100,200] 。
不存在别的 n 有至多 5 个质因子,且同时有更多的好因子。

示例 2:
输入:primeFactors = 8
输出:18
 
提示:
1 <= primeFactors <= 10^9

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximize-number-of-nice-divisors
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2. 解题

  • 一个数有 primeFactors 个质因子
  • 不同的质因子个数 n1,n2,…,nk, 这 k 个数的和为 primeFactors,且 k 个数的乘积最大(好因子数目最大)
  • 参考 LeetCode 343. 整数拆分(DP),分成尽可能多的 3,不够的用 2
  • 外加快速幂,求 3 的大数次幂
class Solution {
    int mod = 1e9+7;
public:
    int maxNiceDivisors(int primeFactors) {
        if(primeFactors <= 3)
            return primeFactors;
        if(primeFactors%3 == 0)
            return mypow(3, primeFactors/3);
        else if(primeFactors%3 == 1)
            return mypow(3, primeFactors/3-1)*4LL%mod;
        else
            return mypow(3, primeFactors/3)*2LL%mod;
    }
    int mypow(int base, int n)
    {
        long long ans = 1, p = base;
        while(n)
        {
            if(n&1)
                ans = (ans*p)%mod;
            p = (p*p)%mod;
            n >>= 1;
        }
        return ans;
    }
};

0 ms 5.8 MB C++


我的CSDN博客地址 https://michael.blog.csdn.net/

长按或扫码关注我的公众号(Michael阿明),一起加油、一起学习进步!
Michael阿明

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页