LeetCode 1819. 序列中不同最大公约数的数目

文章目录

1. 题目

给你一个由正整数组成的数组 nums 。

数字序列的 最大公约数 定义为序列中所有整数的共有约数中的最大整数。

例如,序列 [4,6,16] 的最大公约数是 2 。
数组的一个 子序列 本质是一个序列,可以通过删除数组中的某些元素(或者不删除)得到。

例如,[2,5,10] 是 [1,2,1,2,4,1,5,10] 的一个子序列。
计算并返回 nums 的所有 非空 子序列中 不同 最大公约数的 数目 。

示例 1:

输入:nums = [6,10,3]
输出:5
解释:上图显示了所有的非空子序列与各自的最大公约数。
不同的最大公约数为 610321 。

示例 2:
输入:nums = [5,15,40,5,6]
输出:7
 
提示:
1 <= nums.length <= 10^5
1 <= nums[i] <= 2 * 10^5

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/number-of-different-subsequences-gcds
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2. 解题

  • 不能枚举子序列,2^n 很大
  • 枚举 最大公约数 g ,参考题解区
class Solution {
public:
    int countDifferentSubsequenceGCDs(vector<int>& nums) {
        int maxnum = *max_element(nums.begin(), nums.end());
        vector<int> hasnum(maxnum+1, false);//数字是否存在
        for(auto n : nums)
        {
            hasnum[n] = true;
        }
        int count = 0;
        for(int g = 1; g <= maxnum; g++)//枚举最大公约数
        {
            int gcd = -1;//实际的公约数
            for(int num = g; num <= maxnum; num += g)
            {   // 枚举 公约数 g 的倍数的 num
                if(hasnum[num])// num 存在
                {
                    if(gcd == -1)
                        gcd = num;
                    else
                        gcd = __gcd(num, gcd);//序列的最大公约数
                    if(gcd <= g)// = 找到了序列的 最大公约数 gcd 为 g
                                // < gcd 不会变大, 停止搜索
                        break;
                }
            }
            if(gcd == g)
                count++;
        }
        return count;
    }
};

328 ms 95.9 MB C++


我的CSDN博客地址 https://michael.blog.csdn.net/

长按或扫码关注我的公众号(Michael阿明),一起加油、一起学习进步!
Michael阿明

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页