推荐系统可利用的特征

学自 极客时间 《深度学习推荐系统实战》

  • 推荐系统就是利用“用户信息”“物品信息”“场景信息”这三大部分有价值数据,通过构建推荐模型得出推荐列表的工程系统

  • 特征其实是对某个行为过程相关信息的抽象表达

  • 构建特征原则:尽可能地让特征工程抽取出的一组特征,能够保留推荐环境及用户行为过程中的所有“有用“信息,并且尽量摒弃冗余信息

电影的例子

推荐系统常用特征

  • 1 用户行为数据

  • 2 用户关系数据
    强关系(互相关注),弱关系(点赞,评论)

  • 3 属性、标签类数据

  • 4 内容类数据
    一般,内容类数据无法直接转换成特征,需要进行 NLP、CV 等手段提取关键内容,再输入推荐系统,如图像目标识别,关键词抽取

  • 5 场景信息(上下文信息)
    行为产生的场景信息,最常用的是 时间,GPS,IP地址,还有 所处页面、季节、月份、节假日、天气、空气质量、社会大事件等

相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页