LeetCode 1269. 停在原地的方案数(DP)

文章目录

1. 题目

有一个长度为 arrLen 的数组,开始有一个指针在索引 0 处。

每一步操作中,你可以将指针向左或向右移动 1 步,或者停在原地(指针不能被移动到数组范围外)。

给你两个整数 steps 和 arrLen ,请你计算并返回:在恰好执行 steps 次操作以后,指针仍然指向索引 0 处的方案数。

由于答案可能会很大,请返回方案数 模 10^9 + 7 后的结果。

示例 1:
输入:steps = 3, arrLen = 2
输出:4
解释:3 步后,总共有 4 种不同的方法可以停在索引 0 处。
向右,向左,不动
不动,向右,向左
向右,不动,向左
不动,不动,不动

示例  2:
输入:steps = 2, arrLen = 4
输出:2
解释:2 步后,总共有 2 种不同的方法可以停在索引 0 处。
向右,向左
不动,不动

示例 3:
输入:steps = 4, arrLen = 2
输出:8
 
提示:
1 <= steps <= 500
1 <= arrLen <= 10^6

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/number-of-ways-to-stay-in-the-same-place-after-some-steps
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2. 解题

类似题目:
LeetCode 552. 学生出勤记录 II(动态规划)
LeetCode 576. 出界的路径数(动态规划)
LeetCode 935. 骑士拨号器(动态规划)

  • dp[i] 表示在 i 位置的方案数,每次的方案可以从上一次的 i-1, i, i+1 三个位置转移状态过来。
class Solution {
public:
    int numWays(int steps, int arrLen) {
        int n = min(steps+1, arrLen), mod = 1e9+7;
        vector<long long> dp(n);
        dp[0] = 1;
        for(int t = 1; t <= steps; ++t)
        {
            vector<long long> temp(n, 0);
            for(int i = 0; i < n; ++i)
            {
                temp[i] = dp[i];//不动
                if(i-1 >= 0)
                {
                    temp[i] += dp[i-1];//右移
                    temp[i] %= mod;
                }
                if(i+1 < n)
                {
                    temp[i] += dp[i+1];//左移
                    temp[i] %= mod;
                }
            }
            dp = temp;
        }
        return dp[0]%mod;
    }
};

28 ms 18.2 MB C++


我的CSDN博客地址 https://michael.blog.csdn.net/

长按或扫码关注我的公众号(Michael阿明),一起加油、一起学习进步!
Michael阿明

相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页